BEHAVIOR OF A THREE-LAYER CYLINDRICAL
SHELL CONNECTED TO RIGID MASSES UNDER
THE INFLUENCE OF ACOUSTIC PRESSURE WAVES
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We proposed to investigate a three~layer cylindrical shell connected at the ends to two hemispher-
ical bodies having masses my and m, and not exceeding the outside dimensions of the shell. The shell is
reinforced with two rigid ribs of mass m; and m,, to which is connected via elastic elements a body of
mass m executing reciprocating motion. A plane acoustic pressure wave, its front perpendicular to the
axis of the system so described, impinges on the structure, which is immersed in an ideal compressible
fluid., The first element encountered by the wave is the hemispherical mass m;, followed by the cylindri-
cal shell with the reinforcing member ms. The behavior of the structure is analyzed in time intervals such
that the hydrodynamic influence of the bodies my and m, on one another can be neglected. The hydrodynamic
pressure acting on the structure is determined approximately without regard for diffraction effects from
the ribs, The structure is investigated in the neutral buoyancy state.

The analogous problem for the motion of a body of revolution coupled with a semi~infinite elastic rod
under the influence of a plane acoustic wave is discussed in [1]. The authors [2] have analyzed the behavior
of a homogeneous cylindrical shell end-coupled with rigid bodies of revolution, on which are spring-mounted
point masses, Moshenskii [3] discusses the behavior of a cylindrical shell with rigid diaphragms at the
ends and with masses attached to it at a certain point via elastic elements; a rod model is used to describe
the motion of the shell, i.e., the radial displacements are ignored, and it is assumed that the motion of the
oscillators does not affect the motion of the shell,

1. The analysis of the behavior of the given shell is based on the nonlinear equilibrium equations for
three-layer nonsloping shells having an asymmetrical configuration [4]. The equations of motion are de~
rived with regard for the inertial forces in the radial and tangential directions, as well as the rotational
inertia of the filler, Let u, w, and ¥ be, respectively, the axial displacement, bending deflection, and shear
angle in the filler; then the equations of motion of the cylindrical shell in terms of the forces have the form
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h=X>h, is the thickness of the three-layer shell, h; denotes the thicknesses of the layers (i=1 for the outer
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supporting layer, i=2 for the inner layer, and i=3 for the filler), ¢ is the speed of sound in the medium, £
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is the time, R is the radius of the undisturbed surface of the shell, p is the excess pressure at the inci~
dent wave front, E and v are the reduced elastic modulus and Poisson ratio of the three-layer shell (for
which expressions are given in [4]), G is the shear modulus of the filler material, p; denotes the densities
of the shell layers, £ is the longitudinal coordinate referred to the shell radius R, Ny and N, are the dimen-
sionless specific axial and circumferential forces, Q is the transverse force in the filler, and M and H
are the dimensionless specific torques, which are expressed in terms of the displacements as follows:
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All ensuing calculations are carried out on the basis of the system of equations (1,1) with allowance for the
displacement expressions (1.2) and (1.3). Because of its bulkiness we shall not write out the complete sys-
tem,

The equations of motion of the rigid bodies have the form
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The differentiation is with respect to the dimensionless time &'; X: and X are the displacements of the
rigid bodies with masses m; and m referred to the thickness of the shell h, j=1, 2, 3, 4; N; are the dimen-
sionless total longitudinal forces at the contact sites between the shell and the bodies m;; the minus sign
indicates that the force is calculated ahead of the rib, and the plus sign that it is calculated after it;
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where Qi and Q,; are the components of the hydrodynamic forces of the first and second category [5] for
the respective bodies m, and m,, cg and ¢, are the stiffness coefficients of the springs attaching the body

m to the respective ribs my and m,, and vy and v, are the damping factors, The system of differential equa~-
tions (1,1) written in terms of the displacements is a system of eighth~order partial differential equations,
If we assume that the shell is rigidly clamped at the contact sites with the bodies my, we obtain for the
boundary conditions

for t=&; W=W=0W/0E=0; U=Xj, (1.5)
where §]- are the coordinates of the bodies m;.

The complete system of differential equations of motion (1.4) of the structure, also written in terms
of the displacements (1.1), is solved for the null initial conditions

1=0, U=W=Y¥=X=Xj=U=W="¥=F=X;=0. (1.6)
Time is reckoned from the instant of encounter of the shock wave with the body m;.

2. In determining the hydrodynamic forces acting on the structure we use the approximation methods
developed in the book [5] and applied in {1-3]. We know that the transient functions F(r) characterizing the
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pressure variation due to diffraction have significantly nonzero values only in the initial time period equal
to the transit time of the pressure wave between the two most distant points of the surface of the body, In
this interval the character of the variation of F(r) is almost linear. The main idea of the approximative
approach is that the transient function F(r) is approximated by a linear function

Fo()={—v/t, ) [H@—H{r—,)], (2.1)

in which H(...) is the Heaviside step function and 7« is a characteristic time determined from the equality
of the integrals
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where the last integral is readily computed if the additional mass of the body is known [5]. The problem
can thus be solved approximately,

The hydrodynamic loads acting on the body m, when the pressure wave py(§, T) impinges on it has
the form
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where s is the part of the surface of the body spanned by the wave and n is the unit outward normal to the
surface of the body;
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where Q(7) = [{p,cosnias; is the load generated on the surface of the body under the action of the reflected
81
pressure wave in accordance with the hypothesis of plane reflection;
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Because the analysis is limited to times during which the body m, is acted upon only by the radiation
pressure associated with its motion, the components Qy and Q,, are equal to zero, and Q,; is determined
the same as Qq3. The radiation pressure associated with the motion
of the cylindrical shell is calculated on the basis of the thin-layer hy-
pothesis {6]:
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If a wave with an exponential pressure variation behind the front

. 08 impinges on the body my, i.e.,
Q P1=py exp (—SVH(z),
!.>< /
s /J where p, is the pressure at the wave front and 6 is a factor character-
/(~ 4 /)<2 izing the rate of change of the pressure behind the front, then the ex-
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pressions for the hydrodynamic forces ofthe firstcategory havethe form
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For the calculation of the hydrodynamic loads we assume that the additional mass of the hemisphere
is equal to half the additional mass of the corresponding sphere. If we pass to the limit in (2.2) as 6 goes

to zero, we obtain expressions for the hydrodynamic loads acting on the hemisphere when a plane step wave
is incident upon it {1].

3. The systems of differential equations (1,1) and (1.4) subject to the boundary conditions (1.5) and
initial conditions (1.6) are integrated numerically by the Kutta—Merson method after preliminary applica~-
tion of the method of straight lines to the system of equations (1.1). The central differences, which have
second-order error, are used. At contour and precontour points the differential operators are also ap-
proximated by difference operators with second-order error, with allowance for the boundary conditions.
Here the functions U, W, ¥, 8W/8¢ are represented in the vicinity of the investigated point by Taylor series

with as many terms retained as necessary. The expressions given below for the right derivatives at the
extreme points are used in formulating the algorithm,

At precontour points:
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where [ =(£,—£;)/n+n and n is the number of partitions of the shell. The subscript j, =0, 1, 2, 3, 4, at-
tached to the function indicates that it is calculated at the j-th partition point, j =0 corresponding to the
line of contact of the shell with the body,

The numerical calculations are carried out for a neutral-buoyancy structure immersed in water, The
investigated three-layer shell has steel supporting layers (Ei =E,=2.3-10° kg/cm? vy =v,=0.3), a light-
weight filler transmitting transverse shear (G =2400 kg/cm?; E3=0; v3=0,3); structural symmetry (t; =t,=
0.05;£3=0.09); k=0.0464;£ 1=0;£,=3;£ 3=15§ ;=251 ¢, =0, =0.865; a3=0a,=8.65; Wy=w, =55¢,=¢,=
€3=£,=0; N=62; po =p/E=0.,434.10"%, i.e,, it is assumed that the pressure at the front of the incident
wave is 10 kg/cm?,

Figure 1 shows the variations with time 7;=7cy/c of the accelerations of the rigid bodies when the
structure is acted upon by a step wave (6 =0), where ¢, is the speed of sound in the material of the shell.
For the case in question ¢,=5400 m/sec; j corresponds to the acceleration of the body m;, j=1, 2, 3, 4,
and the number 5 corresponds to the acceleration of the body m. It is evident from the figure that at the
initial instant the maximum acceleration of the body m is less than the maximum acceleration of my by
about 1/1.32, The maximum acceleration of my, on the other hand, is about twice the maximum accelera-
tion of the bodies m; and m, due to reflection of the stress waves from the right end (£ =£,) of the cylin--
drical shell, The absolute maximum accelerations are experienced by the ribs due to their relatively small
mass, Since damping is ignored (sj .=.0), the processes have the character of undamped oscillations, An
abrupt change in the behavior of the X, curve takes place at the instant of arrival of the shock wave at the
cross section £=£;, The time variations of the stresses produced at the contact sites between the shell and
the rigid masses m; for the case of an exponential incident pressure wave (6 =3) are given in Fig. 2. The
plus sign after j signifies that the stresses are calculated to the right of the body m;, and the minus sign
that they are calculated to the left of it. The stresses are given in dimensionless form 0'%" =0‘i(l—V2)/Eik,
where i=1 corresponds to the outer supporting layer (heavy curve) and i =2 to the inner layer (thin curve).
Where only one curve is shown it is implied that the stresses in the layers coincide, Figure 2a gives the
variation with time 7, of the axial (solid curves) and circumferential (dashed curves) membrane stresses,
the latter being calculated in the cross section £ =¢,, As the figure indicates, the stresses in the layers
begin to differ significantly from one another after arrival of the shock wave in the investigated cross sec~
tion. The circumferential stresses in the layers are practically identical and several times smaller than
the axial stresses. The flexural stresses calculated in the outermost fibers, i.e., those furthest from the
neutral line of the layers, are given in Fig, 2b, We see that the flexural stresses in the supporting layers
practically coincide. The curves experience an abrupt change at the instant of arrival of the shock wave
in the investigated cross section, A comparison of Figs. 2a and 2b shows that the membrane stresses in
the supporting layers are an order of magnitude greater than the flexural stresses. Plots of the velocities
and stresses arising in the shell when the structure is acted upon by a wave with an exponential pressure
variation behind the front (6 =3) are given in Fig. 3 for two times: 7,=1 (a, ¢) and 7,=8.5 (b, d). The dot-
dashed curve corresponds to the flexural stresses, and the rest of the nomenclature is the same as before.
It is evident from Figs, 3a and 3b that the velocities W of the shell attain their maximum value in the vicin-
ity of the pressure wave front, Figure 3d indicates that at the time 7,=8.5 the axial membrane stresses
are tensile in any cross section of the shell, while the cricumferential stresses are compressive in the
shell cross sections acted upon by the pressure in the shock wave, and are tensile in the cross sections
unperturbed by the pressure wave. The flexural stresses are a maximum in the vicinity of the rib m3 and
the shock~wave front,

It was assumed in the solution presented above that the structure is subjected to equal external and
internal pressure and that a shock wave impinges on it. We now consider the case in which the structure
has an internal pressure of 1 kg/cm? and is submerged in water to a depth of, say, 50 m, i.e., we take into
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account the external water pressure, which in this case is approximately 5 kg/cm? To avoid any appreci-
able modification of the algorithm we solve the following problem by the relaxation method: A uniform ex-
ternal pressure with an amplitude of 5 kg/cm? is applied instantaneously to the structure. As before, the
behavior of the system is described by Eqs. (1.1) and (1.4), but now each equation includes a damping term
proportional to the velocity. The calculations are carried out in practice until the values of the velocities
and accelerations differ from zero in the eighth significant figure. By the symmetry of the problem it is
sufficient to consider the half of the shell between the rigid masses, for example the part of the shell be-
tween the cross sections £=0 and £=0.5. Plots of the stresses for the structure subjected to an external
water pressure of 5 kg/em? are given in Fig. 4, which uses the same nomenclature as before. It is evident
from the curves for the axial membrane stresses that the stresses in the supporting layers differ consid-
erably from one another. Now to find the stresses in the structure immersed in water when a shock wave
impinges on it we must add the result obtained earlier and presented in Figs.2 and 3 to the results given
in Fig. 4

Finally, we investigate the influence of the stiffness of the coupling of the load m on the behavior of
the structure.- The time variation of the acceleration of the load when an exponentially decaying pressure
wave impinges on the structure is given in Fig, 5 for various values of wy=w;=w: 1) v=0,01; 2) w=0.1; 3)
©=0,25; 4) @=0,5; 5) w=5; 6) wy=%, w;=0 (mass m rigidly attached to the rib my). The dependence of the
maximum acceleration on the coupling stiffness has two maxima for wy=c and w=0.5. The first maximum
is caused by the elastic properties of the shell, and the second by the presence of the elastic coupling be-
tween the mass m and ribs my, m,. For the assumed parameters of the structure the influence of the coup-
ling stiffness of the load m on the reaction of the masses m; and m, and on the forces and stresses in the
shell is mmgmﬁcant
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